PRECILEC

MTI Business Unit (Electric Rotating Machine) 6 avenue des Andes – Bâtiment 5 – 91940 LES ULIS - FRANCIA

DU SOUFFLE A LA PUISSANCE

ALTERNADORES PARA AEROGENERADORES NUESTRO SAVOIR-FAIRE

NUESTRO SAVOIR FAIRE

Desde 1965, PRECILEC es reconocido en el mundo entero como fabricante de alternadores de imanes permanentes, motores, sensores y accionadores técnicos para aplicaciones aeronáuticas, espaciales, nucleares, marítimas e industriales.

Dominamos las exigencias técnicas más rigurosas, nuestra calidad está validada por numerosos certificados y aprobaciones internacionales y por nuestro soporte técnico, especialmente apropiado.

Gracias a esta experiencia única y diversificada, fabricamos alternadores de imanes permanentes (PMG)* principalmente utilizados en tres sectores:

- **POWER PMG**: desde hace más de cuarenta años, fabricamos alternadores piloto que aseguran la alimentación del regulador de tensión del alternador principal. Se aplican principalmente al sector nuclear o marítimo.
- **WIND PMG**: nuestros alternadores equipan aerogeneradores de baja y media potencia.
- HYDRO PMG: nuestros alternadores están configurados muy especialmente para aplicaciones de baja velocidad, en medio hidráulico.

Todos los PMG se conciben siguiendo sus especificaciones y se fabrican según los procedimientos de alta calidad.

*PMG = Permanent magnet Generators

APLICACIONES AEROGENERADOR - EÓLICO

La energía procedente de un aerogenerador, aportada por el viento, es inagotable y «limpia». Participa activamente en la lucha contra el efecto invernadero y el vertido de CO₂ a la atmósfera, y facilita la gestión razonable de los recursos locales.

La electricidad así obtenida permite alimentar aparatos eléctricos (bombas, iluminación...) de manera económica y sostenible, principalmente en lugares aislados, no conectados a una red de distribución eléctrica local.

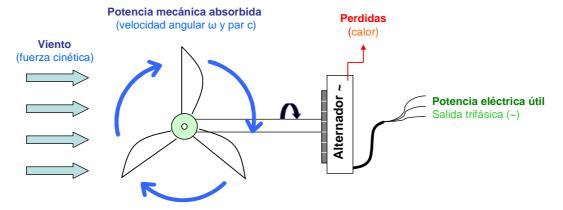
La gama de potencia de nuestros generadores eólicos de imanes permanentes va de 100 vatios a 20 kilovatios.

ERMEC, S.L. BARCELONA C/ Francesc Teixidó, 22 E-08918 Badalona (Spain)

Tel.: (+34) 902 450 160 Fax: (+34) 902 433 088

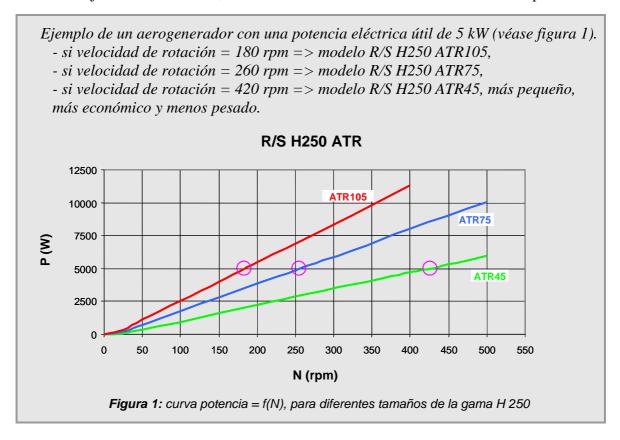
C/ Sagasta, 8, 1^a planta info@ermec.com E-28004 Madrid www.ermec.com (Spain)

ERMEC, S.L. MADRID


PORTUGAL portugal@ermec.com **BILBAO** bilbao@ermec.com

B-0111

ALTERNADORES DE IMANES PERMANENTES - AEROGENERADOR


PRINCIPIO DE FUNCIONAMIENTO

Desde los molinos de viento del pasado, la tecnología ha evolucionado. Ahora, los aerogeneradores generan fuerzas mecánicas y eléctricas. Las palas del rotor de los aerogeneradores captan la energía cinética del viento y hacen funcionar un generador eléctrico, que transforma la energía mecánica en energía eléctrica útil.

VELOCIDAD DE ROTACIÓN, PAR DE ACCIONAMIENTO Y RENDIMIENTO

Para optimizar el rendimiento del generador y minimizar su tamaño, se necesita una *velocidad de rotación* elevada. En efecto, a potencia P equivalente, cuanto mayor sea la velocidad de rotación del eje de accionamiento, menor será el tamaño de un alternador de imán permanente.

www.ermec.com

ALTERNADORES DE IMANES PERMANENTES - AEROGENERADOR

La importancia de la velocidad de rotación es determinante en el cálculo del *rendimiento* del alternador. La evolución del rendimiento es función de la velocidad. En el caso presente (véase figura 2), para una velocidad inferior a 100 rpm, el rendimiento disminuye muy rápidamente. En cambio, a partir de 250 rpm, el rendimiento se establece alrededor del 90%.

El *rendimiento* depende también del tamaño de las generatrices y normalmente es más elevado para las generatrices de tamaño superior.

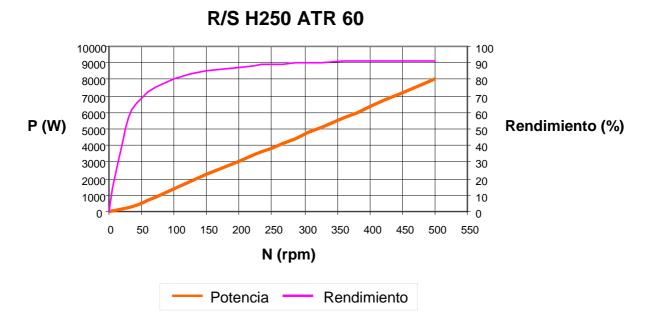
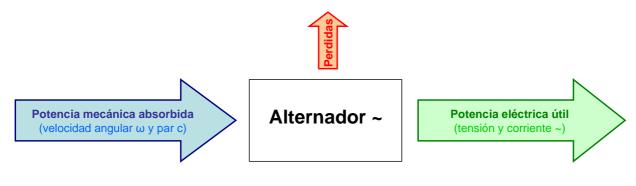



Figura 2: curva potencia eléctrica útil y rendimiento = f(N), para R/S H250 ATR 60

El rendimiento tiene una incidencia directa sobre la potencia mecánica absorbida necesaria para obtener la potencia eléctrica útil deseada (P mecánica absorbida x rendimiento = P eléctrica útil).

P_{mec. abs.} – Pérdidas = P_{elec. útil}

La potencia mecánica absorbida se define por el *par de accionamiento* y la velocidad de rotación (P absorbida = $C \times \omega$). Esto significa que, para una velocidad dada, si el par de accionamiento es suficiente, obtendremos la potencia eléctrica deseada. La relación C et ω define también el punto de funcionamiento del alternador y su rendimiento. La elección de la velocidad es pues de una gran importancia.

ERMEC, S.L. BARCELONA C/ Francesc Teixidó, 22 E-08918 Badalona (Spain) Tel.: (+34) 902 450 160 Fax: (+34) 902 433 088 info@ermec.com www.ermec.com

ERMEC, S.L. MADRID C/ Sagasta, 8, 1^a planta E-28004 Madrid (Spain) PORTUGAL
portugal@ermec.com
BILBAO
bilbao@ermec.com

ALTERNADORES DE IMANES PERMANENTES - AEROGENERADOR

PAR DE ARRANQUE

El *par de arranque* es un par presente a velocidad nula, que constituye la primera resistencia que debe vencerse para arrancar el alternador. Este par de arranque comprende principalmente el par de detención o de *«cogging»:* un par de origen magnético que se opone a la rotación del alternador.

El par de detención es un punto crítico del diseño de un alternador para aerogenerador. Nuestra experiencia en la fabricación de alternadores para el sector aeronáutico y espacial nos permite garantizar un arranque del aerogenerador a velocidad de viento reducida.

FRECUENCIA Y TENSIÓN

La *frecuencia eléctrica* aumenta con la velocidad de rotación de manera lineal.

La *tensión* en los bornes del alternador depende también de la velocidad de rotación del eje de accionamiento, de la carga y de la temperatura.

Si el eje del generador es arrastrado por la fuerza del viento, la velocidad de rotación será variable, así como las propiedades eléctricas de la generatriz. La elección de un *convertidor* eléctrico entre el generador y la carga que hay que alimentar es pues necesaria para obtener una fuente de electricidad de tensión y frecuencia constantes. No proporcionamos el convertidor.

La tensión del generador está limitada normativamente a un valor máximo de 500 Vac. Dado que la tensión aumenta con la velocidad, la tensión de la máquina será lo que limite la sobrevelocidad máxima de la generatriz.

LOS ALTERNADORES PRECILEC

VENTAJAS DE NUESTRO DISEÑO

- Nuestro diseño es fiable, simple y compacto.
- Par de detención ("cogging torque") excepcionalmente reducido que permite a los alternadores arrancar y empezar a producir energía eléctrica con un viento muy débil.
- Un rendimiento óptimo según la configuración solicitada.
- El interfaz mecánico está optimizado.
- Potencia másica elevada (relación W/kg).
- El accionamiento directo suprime la necesidad de un multiplicador de velocidad.
- Ausencia de mantenimiento para máquinas sin palier.

VENTAJAS DE NUESTRA COLABORACIÓN

- Le garantizamos una experiencia de más de 45 años en el diseño y la fabricación de PMG.
- Cada producto se fabrica respetando los procedimientos de Zodiac Aerospace.
- Nuestra fabricación está asegurada en nuestro establecimiento de producción de Châtellerault, Francia.
- Nuestro savoir-faire, asociado a la excelencia de nuestro soporte técnico, es nuestra fuerza.
- En cada proyecto, nos esforzamos por definir la solución técnica más adecuada a sus exigencias.
- Le acompañamos desde la definición técnica y la realización de su prototipo hasta su fabricación en serie.
- Con una preocupación económica evidente, proponemos un prototipo al precio de la serie.

PLIEGO DE CONDICIONES

Compañía:		
Contacto:		

Proyecto:

Teléfono: Fax: Correo electrónico: Sitio Web:

Referencia proyecto:

horizontal?

Aplicación Application

¿Aerogenerador de eje vertical o de eje

Éolienne Axe Vertical ou Axe Horizontal ?

Cantidad prototipo Quantité prototype
Cantidad preserie Quantité présérie
Cantidad - serie Quantité série

INFORMACIÓN ESENCIAL – para completar

Potencia nominal aparente Puissance app. nominale VA (W)

Velocidad nominal Vitesse nominale rpm

Tensión nominal Tension nominale V trifásico

INFORMACIÓN COMPLEMENTARIA

Corriente nominal Courant nominal A

Tensión en vacío Tension à vide V

Par de accionamiento a Couple d'entraînement à velocidad nominal vitesse nominale

velocidad nominal vitesse nominale

Sobre velocidad Survitesse rpm

Duración de sobre

velocidad

Durée de survitesse

s

Temperatura ambiental

Température ambiente

°C

Temperatura ambiental Température ambiante °C (Clase F, 100 K)

Calentamiento Echauffement estándar

COMENTARIOS

pieza(s)

pieza(s)

pieza(s)